Optimization of Culture Conditions for Enhanced Growth, Lipid and Docosahexaenoic Acid (DHA) Production of Aurantiochytrium SW1 by Response Surface Methodology

65Citations
Citations of this article
179Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In this study, optimization of growth, lipid and DHA production of Aurantiochytrium SW1 was carried out using response surface methodology (RSM) in optimizing initial fructose concentration, agitation speed and monosodium glutamate (MSG) concentration. Central composite design was applied as the experimental design and analysis of variance (ANOVA) was used to analyze the data. ANOVA analysis revealed that the process which adequately represented by quadratic model was significant (p < 0.0001) for all the response. All the three factors were significant (p < 0.005) in influencing the biomass and lipid data while only two factors (agitation speed and MSG) gave significant effect on DHA production (p < 0.005). The estimated optimal conditions for enhanced growth, lipid and DHA production were 70 g/L fructose, 250 rpm agitation speed and 10 g/L MSG. Consequently, the quadratic model was validated by applying the estimated optimum conditions, which confirmed the model validity where 19.0 g/L biomass, 9.13 g/L lipid and 4.75 g/L of DHA were produced. The growth, lipid and DHA were 28, 36 and 35% respectively higher than that produced in the original medium prior to optimization.

Cite

CITATION STYLE

APA

Nazir, Y., Shuib, S., Kalil, M. S., Song, Y., & Hamid, A. A. (2018). Optimization of Culture Conditions for Enhanced Growth, Lipid and Docosahexaenoic Acid (DHA) Production of Aurantiochytrium SW1 by Response Surface Methodology. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-27309-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free