Reducing agricultural losses is an effective way to sustainably increase agricultural output efficiency to meet our present and future needs for food, fiber, fodder, and fuel. Our ever-improving understanding of the ways in which plants respond to stress, biotic and abiotic, has led to the development of innovative sensing technologies for detecting crop stresses/stressors and deploying efficient measures. This article aims to present the current state of the methodologies applied in the field of agriculture towards the detection of biotic stress in crops. Key sensing methodologies for plant pathogen (or phytopathogen), as well as herbivorous insects/pests are presented, where the working principles are described, and key recent works discussed. The detection methods overviewed for phytopathogen-related stress identification include nucleic acid-based methods, immunological methods, imaging-based techniques, spectroscopic methods, phytohormone biosensing methods, monitoring methods for plant volatiles, and active remote sensing technologies. Whereas the pest-related sensing techniques include machine-vision-based methods, pest acoustic-emission sensors, and volatile organic compound-based stress monitoring methods. Additionally, Comparisons have been made between different sensing techniques as well as recently reported works, where the strengths and limitations are identified. Finally, the prospective future directions for monitoring biotic stress in crops are discussed.
CITATION STYLE
Kashyap, B., & Kumar, R. (2021). Sensing methodologies in agriculture for monitoring biotic stress in plants due to pathogens and pests. Inventions, 6(2). https://doi.org/10.3390/INVENTIONS6020029
Mendeley helps you to discover research relevant for your work.