Many theoretical models of host-parasite coevolution assume that variation in host resistance to parasite infection is, at least partially, genetically determined and specific to the strain of infecting parasite. However, very few experimental studies have been conducted to test this assumption in animal-parasite systems. Biomphalaria glabrata snails serve as the intermediate hosts of Schistosoma mansoni. Although some snails are resistant to infection, there is no evidence of fixation of resistance in field populations. Two possible explanations for this are high fitness costs associated with resistance and a dynamic coevolution between parasite and host, perhaps involving matching alleles or gene-for-gene interactions. Two strains of B. glabrata were artificially selected for either resistance or susceptibility to each of two strains of S. mansoni parasite for three generations. Third-generation snails were then were exposed to either the parasite strain to which they had been selected or to a different parasite strain. In both host strains, resistance and susceptibility (compatibility) were found to be heritable. Moreover, compatibility to one parasite strain was not associated with compatibility to another strain, implying no genetic trade-off. Our results are discussed in terms of potential mechanisms of resistance in this host-parasite system and their implications to general coevolutionary theory.
CITATION STYLE
Webster, J. P., & Woolhouse, M. E. J. (1998). Selection and strain specificity of compatibility between snail intermediate hosts and their parasitic schistosomes. Evolution, 52(6), 1627–1634. https://doi.org/10.1111/j.1558-5646.1998.tb02243.x
Mendeley helps you to discover research relevant for your work.