A Bayesian belief network-based analytics methodology for early-stage risk detection of novel diseases

5Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

During a pandemic, medical specialists have substantial challenges in discovering and validating new disease risk factors and designing effective treatment strategies. Traditionally, this approach entails several clinical studies and trials that might last several years, during which strict preventive measures are enforced to manage the outbreak and limit the death toll. Advanced data analytics technologies, on the other hand, could be utilized to monitor and expedite the procedure. This research integrates evolutionary search algorithms, Bayesian belief networks, and innovative interpretation techniques to provide a comprehensive exploratory–descriptive–explanatory machine learning methodology to assist clinical decision-makers in responding promptly to pandemic scenarios. The proposed approach is illustrated through a case study in which the survival of COVID-19 patients is determined using inpatient and emergency department (ED) encounters from a real-world electronic health record database. Following an exploratory phase in which genetic algorithms are used to identify a set of the most critical chronic risk factors and their validation using descriptive tools based on the concept of Bayesian Belief Nets, the framework develops and trains a probabilistic graphical model to explain and predict patient survival (with an AUC of 0.92). Finally, a publicly available online, probabilistic decision support inference simulator was constructed to facilitate what-if analysis and aid general users and healthcare professionals in interpreting model findings. The results widely corroborate intensive and expensive clinical trial research assessments.

Cite

CITATION STYLE

APA

Topuz, K., Davazdahemami, B., & Delen, D. (2023). A Bayesian belief network-based analytics methodology for early-stage risk detection of novel diseases. Annals of Operations Research. https://doi.org/10.1007/s10479-023-05377-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free