Lipo-MGN nanoparticle hypoxia attenuation-mediated single-dose radiotherapy- and pH/ROS-responsive T1 contrast magnetic resonance imaging in hepatocellular carcinoma

2Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

Tumor hypoxia is an important factor for developing resistance to radiation therapy (RT) and presents a bleak prognosis in cancer patients undergoing treatment for RT resistant hepatocellular carcinoma. Here, we present the synthesis of liposome-coated Mn3O4 (MGN) nanoparticles (Lipo-MGN) and investigation of their therapeutic potential with RT utilizing a HepG2 cancer model. According to in vitro research, Lipo-MGN effectively produced oxygen in the presence of H2O2 and significantly reduced the expression of HIF-1 in human HepG2 cells that were under hypoxic conditions. Lipo-MGN reversed the radio-resistance brought on by hypoxia and increased cell damage. When Lipo-MGN and RT were administered together in a HepG2 xenograft mice model, the tumor growth was delayed more than with RT alone. As determined by MR imaging, liposome-MGN also exhibited T1 contrast enhancement in tumor. According to these findings, Lipo-MGNs may increase the impact of RT by focusing tumor hypoxia. Hypoxic, radioresistant HepG2 cancer may be treated with Lipo-MGN in clinical studies.

Cite

CITATION STYLE

APA

Thomas, R. G., Kim, S., Nagareddy, R., Vijayan, V., Pullickal, A. M., Yoon, M. S., … Jeong, Y. Y. (2023). Lipo-MGN nanoparticle hypoxia attenuation-mediated single-dose radiotherapy- and pH/ROS-responsive T1 contrast magnetic resonance imaging in hepatocellular carcinoma. Cancer Nanotechnology, 14(1). https://doi.org/10.1186/s12645-023-00182-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free