Jinmaitong ameliorates diabetic peripheral neuropathy through suppressing TXNIP/NLRP3 inflammasome activation in the streptozotocin-induced diabetic rat model

26Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Jinmaitong (JMT) has been used to prevent and treat diabetic peripheral neuropathy (DPN) for decades. The present study aimed to elucidate the effects of JMT on thioredoxin-interacting protein (TXNIP) and Nod-like receptor protein 3 (NLRP3) inflammasome activation in the streptozotocin (STZ)-induced rat model. Methods: The diabetic rat model was induced by a single intraperitoneal injection of 55 mg/ kg STZ. The rats were divided into 3 groups (n = 8–10 per group): diabetic control, JMT (0.876 g/kg/d), and alpha-lipoic acid (ALA; 100 mg/kg/d). Body weight and blood glucose levels were monitored every 4 weeks for 12 weeks. Mechanical allodynia and myelin sheath injury of sciatic nerves (SNs) were assessed using the mechanical withdrawal threshold (MWT) test and Luxol fast blue staining. Serum T-superoxide dismutase (T-SOD), malon-dialdehyde (MDA), and catalase (CAT) levels were measured using commercially available kits. TXNIP/NLRP3 inflammasome proteins, including TXNIP, NLRP3, pro-caspase-1, and cleaved-caspase-1, and the downstream protein interleukin (IL)-1β, were measured using immunohistochemistry and Western blot. Gasdermin D (GSDMDC1) protein expression was analyzed using Western blot, and serum IL-1β and IL-18 levels were detected using ELISA. Results: JMT did not significantly affect body weight or level of fasting blood glucose but improved mechanical allodynia and myelin sheath injury of SNs at 12 weeks following treatment. Moreover, JMT increased serum levels of the anti-oxidative enzymes CAT and T-SOD, and decreased MDA levels. Both JMT and ALA decreased expression of TXNIP, NLRP3, and cleaved-caspase-1 protein. JMT and ALA also decreased IL-1β, IL-18, and GSDMDC1 protein expression. Conclusion: The current study demonstrated that TXNIP/NLRP3 inflammasome activation is involved in the molecular mechanisms underlying JMT’s protective effects in the STZ-induced diabetic rat model, which provides novel evidence to support the future clinical use of JMT.

Cite

CITATION STYLE

APA

Sun, Q., Wang, C., Yan, B., Shi, X., Shi, Y., Qu, L., & Liang, X. (2019). Jinmaitong ameliorates diabetic peripheral neuropathy through suppressing TXNIP/NLRP3 inflammasome activation in the streptozotocin-induced diabetic rat model. Diabetes, Metabolic Syndrome and Obesity, 12, 2145–2155. https://doi.org/10.2147/DMSO.S223842

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free