The powertrain efficiency deeply affects the performance of off-road vehicles like wheel loaders in terms of fuel economy, load capability, smooth control, etc. The hydrostatic transmission (HST) systems have been widely adopted in off-road vehicles for providing large power density and continuous variable control, yet using relatively low efficiency hydraulic components. This paper presents a hydrostatic-mechanical power split transmission (PST) solution for a 10-ton wheel loader for improving the fuel economy of a wheel loader. A directly-engine-coupled HST solution for the same wheel loader is also presented for comparison. This work introduced a sizing approach for both PST and HST, which helps to make proper selections of key powertrain components. Furthermore, this work also presented a multi-domain modeling approach for the powertrain of a wheel loader, that integrates the modeling of internal combustion (IC) engine, hydraulic systems, mechanical transmission, vehicle(wheel) dynamics, and relevant control systems. In this modeling, an engine torque evaluation method with a throttle position control system was developed to describe the engine dynamics; a method to express the hydraulic loss of the axial piston hydraulic pump/motor was developed for modeling the hydraulic transmission; and a vehicle velocity control system was developed based on altering the displacement of a hydraulic unit. Two powertrain models were developed, respectively, for the PST and HST systems of a wheel loader using MATLAB/Simulink. The simulation on a predefined wheel loader drive cycle was conducted on both powertrain models to evaluate and compare the performance of wheel loader using different systems, including vehicle velocity, hydraulic displacement control, hydraulic torque, powertrain efficiency, and engine power consumption. The simulation results indicate that the vehicle velocity controller developed functions well for both the PST and HST systems; a wheel loader using the proposed PST solution can overall save about 8% energy consumption compared using an HST solution in one drive cycle. The sizing method and simulation models developed in this work should facilitate the development of the powertrains for wheel loaders and other wheeled heavy vehicles.
CITATION STYLE
Xiong, S., Wilfong, G., & Lumkes, J. (2019). Components sizing and performance analysis of hydro-mechanical power split transmission applied to a wheel loader. Energies, 12(9). https://doi.org/10.3390/en12091613
Mendeley helps you to discover research relevant for your work.