Proteins function mainly through interactions, especially with DNA and other proteins. While some large-scale interaction networks are now available for a number of model organisms, their experimental generation remains difficult. Consequently, interolog mapping - the transfer of interaction annotation from one organism to another using comparative genomics - is of significant value. Here we quantitatively assess the degree to which interologs can be reliably transferred between species as a function of the sequence similarity of the corresponding interacting proteins. Using interaction information from Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and Helicobacter pylori, we find that protein-protein interactions can be transferred when a pair of proteins has a joint sequence identity > 80% or a joint E-value <10-70. (These "joint" quantities are the geometric means of the identities or E-values for the two pairs of interacting proteins.) We generalize our interolog analysis to protein-DNA binding, finding such interactions are conserved at specific thresholds between 30% and 60% sequence identity depending on the protein family. Furthermore, we introduce the concept of a " regulog" - a conserved regulatory relationship between proteins across different species. We map interologs and regulogs from yeast to a number of genomes with limited experimental annotation (e.g., Arabidopsis thaliana) and make these available through all online database at http://interolog.gersteinlab.org. Specifically, we are able to transfer ∼90,000 potential protein-protein interactions to the worm. We test a number of these in two-hybrid experiments and are able to verify 45 overlaps, which we show to be statistically significant. ©2004 by Cold Spring Harbor Laboratory Press.
CITATION STYLE
Yu, H., Luscombe, N. M., Lu, H. X., Zhu, X., Xia, Y., Han, J. D. J., … Gerstein, M. (2004). Annotation transfer between genomes: Protein-protein interrologs and protein-DNA regulogs. Genome Research, 14(6), 1107–1118. https://doi.org/10.1101/gr.1774904
Mendeley helps you to discover research relevant for your work.