The molecular anatomy of human Hsp60 and its similarity with that of bacterial orthologs and acetylcholine receptor reveal a potential pathogenetic role of anti-chaperonin immunity in myasthenia gravis

36Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Heat-shock protein 60 (Hsp60) is ubiquitous and highly conserved being present in eukaryotes and prokaryotes, including pathogens. This chaperonin, although typically a mitochondrial protein, can also be found in other intracellular sites, extracellularly, and in circulation. Thus, it can signal the immune system and participate in the development of inflammation and immune reactions. Both phenomena can be elicited by human and foreign Hsp60 (e.g., bacterial GroEL), when released into the blood by infectious agents. Consequently, all these Hsp60 proteins become part of a complex autoimmune response characterized by multiple cross reactions because of their structural similarities. In this study, we demonstrate that Hsp60 proteins from humans and two common pathogens, Chlamydia trachomatis and Chlamydia pneumoniae, share various sequence segments of potentially highly immunogenic epitopes with acetylcholine receptor α1 subunit (AChRα1). The structural data indicate that AChRα1 antibodies, implicated in the pathogenesis of myasthenia gravis, could very well be elicited and/or maintained by self- and/or bacterial Hsp60. © Springer Science+Business Media, LLC 2012.

Cite

CITATION STYLE

APA

Marino Gammazza, A., Bucchieri, F., Grimaldi, L. M. E., Benigno, A., Conway De MacArio, E., MacArio, A. J. L., … Cappello, F. (2012). The molecular anatomy of human Hsp60 and its similarity with that of bacterial orthologs and acetylcholine receptor reveal a potential pathogenetic role of anti-chaperonin immunity in myasthenia gravis. Cellular and Molecular Neurobiology, 32(6), 943–947. https://doi.org/10.1007/s10571-011-9789-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free