Early detection of pre-diabetes (pre-DM) can prevent DM and related complications. This review examined studies on non-laboratory-based pre-DM risk prediction tools to identify important predictors and evaluate their performance. PubMed, Embase, MEDLINE, CINAHL were searched in February 2023. Studies that developed tools with: (1) pre-DM as a prediction outcome, (2) fasting/post-prandial blood glucose/HbA1c as outcome measures, and (3) non-laboratory predictors only were included. The studies’ quality was assessed using the CASP Clinical Prediction Rule Checklist. Data on pre-DM definitions, predictors, validation methods, performances of the tools were extracted for narrative synthesis. A total of 6398 titles were identified and screened. Twenty-four studies were included with satisfactory quality. Eight studies (33.3%) developed pre-DM risk tools and sixteen studies (66.7%) focused on pre-DM and DM risks. Age, family history of DM, diagnosed hypertension and obesity measured by BMI and/or WC were the most common non-laboratory predictors. Existing tools showed satisfactory internal discrimination (AUROC: 0.68–0.82), sensitivity (0.60–0.89), and specificity (0.50–0.74). Only twelve studies (50.0%) had validated their tools externally, with a variance in the external discrimination (AUROC: 0.31–0.79) and sensitivity (0.31–0.92). Most non-laboratory-based risk tools for pre-DM detection showed satisfactory performance in their study populations. The generalisability of these tools was unclear since most lacked external validation.
CITATION STYLE
Cheng, W. H. G., Mi, Y., Dong, W., Tse, E. T. Y., Wong, C. K. H., Bedford, L. E., & Lam, C. L. K. (2023, April 1). Non-Laboratory-Based Risk Prediction Tools for Undiagnosed Pre-Diabetes: A Systematic Review. Diagnostics. Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/diagnostics13071294
Mendeley helps you to discover research relevant for your work.