Motivation: Recent work has demonstrated the feasibility of using non-numerical, qualitative data to parameterize mathematical models. However, uncertainty quantification (UQ) of such parameterized models has remained challenging because of a lack of a statistical interpretation of the objective functions used in optimization. Results: We formulated likelihood functions suitable for performing Bayesian UQ using qualitative observations of underlying continuous variables or a combination of qualitative and quantitative data. To demonstrate the resulting UQ capabilities, we analyzed a published model for immunoglobulin E (IgE) receptor signaling using synthetic qualitative and quantitative datasets. Remarkably, estimates of parameter values derived from the qualitative data were nearly as consistent with the assumed ground-truth parameter values as estimates derived from the lower throughput quantitative data. These results provide further motivation for leveraging qualitative data in biological modeling.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Mitra, E. D., & Hlavacek, W. S. (2020). Bayesian inference using qualitative observations of underlying continuous variables. Bioinformatics, 36(10), 3177–3184. https://doi.org/10.1093/bioinformatics/btaa084