18F-Fluciclovine PET Imaging of Glutaminase Inhibition in Breast Cancer Models

8Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

Aggressive cancers such as triple-negative breast cancer (TNBC) avidly metabolize glutamine as a feature of their malignant phenotype. The conversion of glutamine to glutamate by the glutaminase enzyme represents the first and rate-limiting step of this pathway and a target for drug development. Indeed, a novel glutaminase inhibitor (GLSi) has been developed and tested in clinical trials but with limited success, suggesting the potential for a biomarker to select patients who could benefit from this novel therapy. Here, we studied a nonmetabolized amino acid analog, 18F-fluciclovine, as a PET imaging biomarker for detecting the pharmacodynamic response to GLSi. Methods: Uptake of 18F-fluciclo-vine into human breast cancer cells was studied in the presence and absence of inhibitors of glutamine transporters and GLSi. To allow 18F-fluciclovine PET to be performed on mice, citrate in the tracer formulation is replaced by phosphate-buffered saline. Mice bearing triple-negative breast cancer (TNBC) xenografts (HCC38, HCC1806, and MBA-MD-231) and estrogen receptor–positive breast cancer xenografts (MCF-7) were imaged with dynamic PET at baseline and after a 2-d treatment of GLSi (CB839) or vehicle. Kinetic analysis suggested reversible uptake of the tracer, and the distribution volume (VD) of 18F-fluciclo-vine was estimated by Logan plot analysis. Results: Our data showed that cellular uptake of 18F-fluciclovine is mediated by glutamine transporters. A significant increase in VD was observed after CB839 treatment in TNBC models exhibiting high glutaminase activity (HCC38 and HCC1806) but not in TNBC or MCF-7 exhibiting low glutaminase. Changes in VD were corroborated with changes in GLS activity measured in tumors treated with CB839 versus vehicle, as well as with changes in VD of 18F-(2S, R4)-fluoroglutamine, which we previously validated as a measure of cellular glutamine pool size. A moderate, albeit significant, decrease in 18F-FDG PET signal was observed in HCC1806 tumors after CB839 treatment. Conclusion: 18F-fluciclovine PET has potential to serve as a clinically translatable pharmacodynamic biomarker of GLSi.

Cite

CITATION STYLE

APA

Zhou, R., Choi, H., Cao, J., Pantel, A., Gupta, M., Lee, H. S., & Mankoff, D. (2023). 18F-Fluciclovine PET Imaging of Glutaminase Inhibition in Breast Cancer Models. Journal of Nuclear Medicine, 64(1), 131–136. https://doi.org/10.2967/jnumed.122.264152

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free