Objectives: A trans-ethnicmeta-analysis of type 2 diabetes genome-wide association studies has identified seven novel susceptibility variants in or near TMEM154, SSR1/RREB1, FAF1, POU5F1/ TCF19, LPP, ARL15 and ABCB9/MPHOSPH9. The aim of our study was to investigate associations between these novel risk variants and type 2 diabetes and pre-diabetic traits in a Danish population-based study with measurements of plasma glucose and serum insulin after an oral glucose tolerance test in order to elaborate on the physiological impact of the variants. Methods: Case-control analyses were performed in up to 5,777 patients with type 2 diabetes and 7,956 individuals with normal fasting glucose levels. Quantitative trait analyses were performed in up to 5,744 Inter99 participants naïve to glucose-lowering medication. Significant associations between TMEM154-rs6813195 and the beta cell measures insulinogenic index and disposition index and between FAF1-rs17106184 and 2-hour serum insulin levels were selected for further investigation in additional Danish studies and results were combined in meta-analyses including up to 6,486 Danes. Results: We confirmed associations with type 2 diabetes for five of the seven SNPs (TMEM154-rs6813195, FAF1-rs17106184, POU5F1/TCF19-rs3130501, ARL15-rs702634 and ABCB9/MPHOSPH9-rs4275659). The type 2 diabetes risk C-allele of TMEM154-rs6813195 associated with decreased disposition index (n=5,181, β=-0.042, p=0.012) and insulinogenic index (n=5,181, β=-0.032, p=0.043) in Inter99 and these associations remained significant in meta-analyses including four additional Danish studies (disposition index n=6,486, β=-0.042, p=0.0044; and insulinogenic index n=6,486, β=-0.037, p=0.0094). The type 2 diabetes risk G-allele of FAF1-rs17106184 associated with increased levels of 2-hour serum insulin (n=5,547, β=0.055, p=0.017) in Inter99 and also when combining effects with three additional Danish studies (n=6,260, β=0.062, p=0.0040). Conclusion: Studies of type 2 diabetes intermediary traits suggest the diabetogenic impact of the Callele of TMEM154-rs6813195 is mediated through reduced beta cell function. The impact of the diabetes risk G-allele of FAF1-rs17106184 on increased 2-hour insulin levels is however unexplained.
CITATION STYLE
Harder, M. N., Appel, E. V. R., Grarup, N., Gjesing, A. P., Ahluwalia, T. S., Jørgensen, T., … Hansen, T. (2015). The type 2 diabetes risk allele of TMEM154-rs6813195 associates with decreased beta cell function in a study of 6,486 danes. PLoS ONE, 10(3). https://doi.org/10.1371/journal.pone.0120890
Mendeley helps you to discover research relevant for your work.