Research on vibration reduction performance of dynamic vibration absorber based on damping characteristic of a new material

5Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The absorbing effect of traditional dynamic vibration absorber (TDVA) is satisfactory only when the natural frequency is close to the excitation frequency. For this defect, a semi-active vibration absorber is designed with magnetorheological elastomer (MRE) as a stiffness element, that its stiffness can be controlled by magnetic field, to widen the frequency band of the absorber. Theory and experiments show that reducing the damp of the absorber can improve the performance of the absorber at the anti-resonance point, but it will cause the vibration of the controlled system at the new resonance point, which caused by the addition of a DVA, to be more intense. For this problem, the compatibilizer: silane coupling agent KH570, is added to the preparation of MRE to reduce material damping, at the same time, the stiffness control strategy is used to eliminate the resonance of the controlled system caused by the addition of DVA. The final experimental results show that the frequency band of vibration reduction has been broadened effectively and the vibration reduction performance has been improved considerably. Moreover, the resonance has been eliminated very well.

Cite

CITATION STYLE

APA

Song, W., Liu, Z., Lu, C., Li, Y., & Li, B. (2020). Research on vibration reduction performance of dynamic vibration absorber based on damping characteristic of a new material. Advances in Mechanical Engineering, 12(11). https://doi.org/10.1177/1687814020961596

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free