A new sensor bias-driven spatio-temporal fusion model based on convolutional neural networks

67Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Owing to the tradeoff between scanning swath and pixel size, currently no satellite Earth observation sensors are able to collect images with high spatial and temporal resolution simultaneously. This limits the application of satellite images in many fields, including the characterization of crop yields or the detailed investigation of human-nature interactions. Spatio-temporal fusion (STF) is a widely used approach to solve the aforementioned problem. Traditional STF methods reconstruct fine-resolution images under the assumption that changes are able to be transferred directly from one sensor to another. However, this assumption may not hold in real scenarios, owing to the different capacity of available sensors to characterize changes. In this paper, we model such differences as a bias, and introduce a new sensor bias-driven STF model (called BiaSTF) to mitigate the differences between the spectral and spatial distortions presented in traditional methods. In addition, we propose a new learning method based on convolutional neural networks (CNNs) to efficiently obtain this bias. An experimental evaluation on two public datasets suggests that our newly developed method achieves excellent performance when compared to other available approaches.

Cite

CITATION STYLE

APA

Li, Y., Li, J., He, L., Chen, J., & Plaza, A. (2020). A new sensor bias-driven spatio-temporal fusion model based on convolutional neural networks. Science China Information Sciences, 63(4). https://doi.org/10.1007/s11432-019-2805-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free