XeMRI to CT lung image registration enhanced with personalized 4DCT-derived motion model

N/ACitations
Citations of this article
9Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This paper presents a novel method for multi-modal lung image registration constrained by a motion model derived from lung 4DCT. The motion model is estimated based on the results of intra-patient image registration using Principal Component Analysis. The approach with a prior motion model is particularly important for regions where there is not enough information to reliably drive the registration process, as in the case of hyperpolarized Xenon MRI and proton density MRI to CT registration. Simultaneously, the method addresses local variations between images in the supervoxel-based motion model parameters optimization step. We compare our results in terms of the plausibility of the estimated deformations and correlation coefficient with 4DCT-based estimated ventilation maps using state-of-the-art multi-modal image registration methods. Our method achieves higher average correlation scores, showing that the application of Principal Component Analysis-based motion model in the deformable registration, helps to drive the registration for the regions of the lungs with insufficient amount of information.

Cite

CITATION STYLE

APA

Szmul, A., Matin, T., Gleeson, F. V., Schnabel, J. A., Grau, V., & Papież, B. W. (2018). XeMRI to CT lung image registration enhanced with personalized 4DCT-derived motion model. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 11040 LNCS, pp. 260–271). Springer Verlag. https://doi.org/10.1007/978-3-030-00946-5_26

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free