High‐throughput metabolomics predicts drug–target relationships for eukaryotic proteins

  • Holbrook‐Smith D
  • Durot S
  • Sauer U
16Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Chemical probes are important tools for understanding biological systems. However, because of the huge combinatorial space of targets and potential compounds, traditional chemical screens cannot be applied systematically to find probes for all possible druggable targets. Here, we demonstrate a novel concept for overcoming this challenge by leveraging high-throughput metabolo-mics and overexpression to predict drug-target interactions. The metabolome profiles of yeast treated with 1,280 compounds from a chemical library were collected and compared with those of inducible yeast membrane protein overexpression strains. By matching metabolome profiles, we predicted which small molecules targeted which signaling systems and recovered known interactions. Drug-target predictions were generated across the 86 genes studied, including for difficult to study membrane proteins. A subset of those predictions were tested and validated, including the novel targeting of GPR1 signaling by ibuprofen. These results demonstrate the feasibility of predicting drug-target relationships for eukaryotic proteins using high-throughput metabolomics.

Cite

CITATION STYLE

APA

Holbrook‐Smith, D., Durot, S., & Sauer, U. (2022). High‐throughput metabolomics predicts drug–target relationships for eukaryotic proteins. Molecular Systems Biology, 18(2). https://doi.org/10.15252/msb.202110767

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free