Binding of dickkopf-3 to CXCR7 enhances vascular progenitor cell migration and degradable graft regeneration

39Citations
Citations of this article
49Readers
Mendeley users who have this article in their library.

Abstract

Rationale: Vascular progenitor cells play key roles in physiological and pathological vascular remodeling-a process that is crucial for the regeneration of acellular biodegradable scaffolds engineered as vital strategies against the limited availability of healthy autologous vessels for bypass grafting. Therefore, understanding the mechanisms driving vascular progenitor cells recruitment and differentiation could help the development of new strategies to improve tissue-engineered vessel grafts and design drug-targeted therapy for vessel regeneration. Objective: In this study, we sought to investigate the role of Dkk3 (dickkopf-3), recently identifed as a cytokine promotor of endothelial repair and smooth muscle cell differentiation, on vascular progenitor cells cell migration and vascular regeneration and to identify its functional receptor that remains unknown. Methods and Results: Vascular stem/progenitor cells were isolated from murine aortic adventitia and selected for the Sca-1 (stem cell antigen-1) marker. Dkk3 induced the chemotaxis of Sca-1+ cells in vitro in transwell and wound healing assays and ex vivo in the aortic ring assay. Functional studies to identify Dkk3 receptor revealed that overexpression or knockdown of chemokine receptor CXCR7 (C-X-C chemokine receptor type 7) in Sca-1+ cells resulted in alterations in cell migration. Coimmunoprecipitation experiments using Sca-1+ cell extracts treated with Dkk3 showed the physical interaction between DKK3 and CXCR7, and specifc saturation binding assays identifed a high-affnity Dkk3-CXCR7 binding with a dissociation constant of 14.14 nmol/L. Binding of CXCR7 by Dkk3 triggered the subsequent activation of ERK1/2 (extracellular signal-regulated kinases 1/2)-, PI3K (phosphatidylinositol 3-kinase)/AKT (protein kinase B)-, Rac1 (Ras-related C3 botulinum toxin substrate 1)-, and RhoA (Ras homolog gene family, member A)-signaling pathways involved in Sca-1+ cell migration. Tissue-engineered vessel grafts were fabricated with or without Dkk3 and implanted to replace the rat abdominal aorta. Dkk3-loaded tissue-engineered vessel grafts showed effcient endothelization and recruitment of vascular progenitor cells, which had acquired characteristics of mature smooth muscle cells. CXCR7 blocking using specifc antibodies in this vessel graft model hampered stem/progenitor cell recruitment into the vessel wall, thus compromising vascular remodeling. Conclusions: We provide a novel and solid evidence that CXCR7 serves as Dkk3 receptor, which mediates Dkk3-induced vascular progenitor migration in vitro and in tissue-engineered vessels, hence harnessing patent grafts resembling native blood vessels.

Cite

CITATION STYLE

APA

Bhaloo, S. I., Wu, Y., Le Bras, A., Yu, B., Gu, W., Xie, Y., … Xu, Q. (2018). Binding of dickkopf-3 to CXCR7 enhances vascular progenitor cell migration and degradable graft regeneration. Circulation Research, 123(4), 451–466. https://doi.org/10.1161/CIRCRESAHA.118.312945

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free