Discovering uncolored naturalness in exotic Higgs decays

107Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Abstract: Solutions to the hierarchy problem usually require top partners. In standard SUSY or composite Higgs theories, the partners carry SM color and are becoming increasingly constrained by LHC searches. However, theories like Folded SUSY (FS), Twin Higgs (TH) and Quirky Little Higgs (QLH) introduce uncolored top partners, which can be SM singlets or carry electroweak charge. Their small production cross section left doubt as to whether the LHC can effectively probe such scenarios. Typically, these partners are charged under their own mirror color gauge group. In FS and QLH, the absence of light mirror matter allows glueballs to form at the bottom of the mirror spectrum. This is also the case in some TH realizations. The Higgs can decay to these mirror glueballs, with the glueballs decaying into SM particles with potentially observable lifetimes. We undertake the first detailed study of this glueball signature and quantitatively demonstrate the discovery potential of uncolored naturalness via exotic Higgs decays at the LHC and a potential future 100TeV collider. Our findings indicate that mirror glueballs are the smoking gun signature of natural FS and QLH type theories, in analogy to tree-level Higgs coupling shifts for the TH. We show that glueball masses in the ∼ 10-60 GeV mass range are theoretically preferred. Careful treatment of lifetime, mirror-hadronization and non-perturbative uncertainties is required to perform meaningful collider studies. We outline several new search strategies for exotic Higgs decays of the form h → XX → 4f at the LHC, with X having lifetimes in the 10μm to km range. We find that FS stops can be probed with masses up to 600 (1100) GeV at the LHC with 300 (3000) fb−1 of data, and TH top partners could be accessible with masses up to 900 (1500) GeV. This makes exotic Higgs decays the prime discovery channel for uncolored naturalness at the LHC.

Cite

CITATION STYLE

APA

Curtin, D., & Verhaaren, C. B. (2015). Discovering uncolored naturalness in exotic Higgs decays. Journal of High Energy Physics, 2015(12), 1–36. https://doi.org/10.1007/JHEP12(2015)072

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free