On the Acceleration of Forward-Backward Splitting via an Inexact Newton Method

16Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We propose a Forward-Backward Truncated-Newton method (FBTN) for minimizing the sum of two convex functions, one of which smooth. Unlike other proximal Newton methods, our approach does not involve the employment of variable metrics, but is rather based on a reformulation of the original problem as the unconstrained minimization of a continuously differentiable function, the forwardbackward envelope (FBE). We introduce a generalized Hessian for the FBE that symmetrizes the generalized Jacobian of the nonlinear system of equations representing the optimality conditions for the problem. This enables the employment of conjugate gradient method (CG) for efficiently solving the resulting (regularized) linear systems, which can be done inexactly. The employment of CG prevents the computation of full (generalized) Jacobians, as it requires only (generalized) directional derivatives. The resulting algorithm is globally (subsequentially) convergent, Q-linearly under an error bound condition, and up to Q-superlinearly and Qquadratically under regularity assumptions at the possibly non-isolated limit point.

Cite

CITATION STYLE

APA

Themelis, A., Ahookhosh, M., & Patrinos, P. (2019). On the Acceleration of Forward-Backward Splitting via an Inexact Newton Method. In Splitting Algorithms, Modern Operator Theory, and Applications (pp. 363–412). Springer International Publishing. https://doi.org/10.1007/978-3-030-25939-6_15

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free