Compressible laminar streaks with wall suction

12Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The response of a compressible laminar boundary layer subject to free-stream vortical disturbances and steady mean-flow wall suction is studied. The theoretical frameworks of Leib et al. [J. Fluid Mech.380, 169-203 (1999)10.1017/S0022112098003504] and Ricco and Wu [J. Fluid Mech.587, 97-138 (2007)10.1017/S0022112007007070], based on the linearized unsteady boundary-region equations, are adopted to study the influence of suction on the kinematic and thermal streaks arising through the interaction between the free-stream vortical perturbations and the boundary layer. In the asymptotic limit of small spanwise wavelength compared with the boundary layer thickness, i.e., when the disturbance flow is conveniently described by the steady compressible boundary region equations, the effect of suction is mild on the velocity fluctuations and negligible on the temperature fluctuations. When the spanwise wavelength is comparable with the boundary layer thickness, small suction values intensify the supersonic streaks, while higher transpiration levels always stabilize the disturbances at all Mach numbers. At larger spanwise wavelengths, very small amplitudes of wall transpiration have a dramatic stabilizing effect on all boundary layer fluctuations, which can take the form of transiently growing thermal streaks, large amplitude streamwise oscillations, or oblique exponentially growing Tollmien-Schlichting waves, depending on the Mach number and the wavelengths. The range of wavenumbers for which the exponential growth occurs becomes narrower and the location of instability is significantly shifted downstream by mild suction, indicating that wall transpiration can be a suitable vehicle for delaying transition when the laminar breakdown is promoted by these unstable disturbances. The typical streamwise wavelength of these disturbances is instead not influenced by suction, and asymptotic triple deck theory predicts the strong changes in growth rate and the very mild modifications in streamwise wavenumber in the limit of larger downstream distance and small spanwise wavenumber. © 2013 AIP Publishing LLC.

Cite

CITATION STYLE

APA

Ricco, P., Shah, D., & Hicks, P. D. (2013). Compressible laminar streaks with wall suction. Physics of Fluids, 25(5). https://doi.org/10.1063/1.4807066

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free