Facile synthesis of SnO 2 aerogel/reduced graphene oxide nanocomposites via in situ annealing for the photocatalytic degradation of methyl orange

61Citations
Citations of this article
55Readers
Mendeley users who have this article in their library.

Abstract

SnO 2 aerogel/reduced graphene oxide (rGO) nanocomposites were synthesized using the sol–gel method. A homogeneous dispersion of graphene oxide (GO) flakes in a tin precursor solution was captured in a three-dimensional network SnO 2 aerogel matrix and successively underwent supercritical alcohol drying followed by the in situ thermal reduction of GO, resulting in SnO 2 aerogel/rGO nanocomposites. The chemical interaction between aerogel matrix and GO functional groups was confirmed by a peak shift in the Fourier transform infrared spectra and a change in the optical bandgap of the diffuse reflectance spectra. The role of rGO in 3D aerogel structure was studied in terms of photocatalytic activity with detailed mechanism of the enhancement such as electron transfer between the GO and SnO 2 . In addition, the photocatalytic activity of these nanocomposites in the methyl orange degradation varied depending on the amount of rGO loading in the SnO 2 aerogel matrix; an appropriate amount of rGO was required for the highest enhancement in the photocatalytic activity of the SnO 2 aerogel. The proposed nanocomposites could be a useful solution against water pollutants.

Cite

CITATION STYLE

APA

Kim, T., Parale, V. G., Jung, H. N. R., Kim, Y., Driss, Z., Driss, D., … Park, H. H. (2019). Facile synthesis of SnO 2 aerogel/reduced graphene oxide nanocomposites via in situ annealing for the photocatalytic degradation of methyl orange. Nanomaterials, 9(3). https://doi.org/10.3390/nano9030358

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free