To simulate flood processes at the basin level, the GPU-based High-Performance Integrated Hydrodynamic Modelling System (HiPIMS) is gaining interest as computational capability increases. However, the difficulty of coping with rainfall input to HiPIMS reduces the possibility of acquiring a satisfactory simulation accuracy. The objective of this study is to test the sensitivity of the surface runoff coefficient in the HiPIMS source term in the Misai basin with an area of 797 km2 in south China. To achieve this, the basin was divided into 909,824 grid cells, to each of which a Manning coefficient was assigned based on its land use type interpreted from remote sensing data. A sensitivity analysis was conducted for three typical flood processes under four types of surface runoff coefficients, assumed a priori, upon three error functions. The results demonstrate the crucial role of the surface runoff coefficient in achieving better simulation accuracy and reveal that this coefficient varies with flood scale and is unevenly distributed over the basin.
CITATION STYLE
Wang, Y., & Yang, X. (2018). Sensitivity analysis of the surface runoff coefficient of HiPIMS in simulating flood processes in a large basin. Water (Switzerland), 10(3). https://doi.org/10.3390/w10030253
Mendeley helps you to discover research relevant for your work.