Small interfering RNAs (siRNAs) processed from viral replication intermediates by RNase III-like enzyme Dicer guide sequence-specific antiviral silencing in fungi, plants, and invertebrates. In plants, virus-derived siRNAs (viRNAs) can target and silence cellular transcripts and, in some cases, are responsible for the induction of plant diseases. Currently it remains unclear whether viRNAs are also capable of modulating the expression of cellular genes in the animal kingdom, although animal virus-encoded microRNAs (miRNAs) are known to guide efficient silencing of host genes, thereby facilitating virus replication. In this report, we showed that viRNAs derived from a modified nodavirus triggered potent silencing of homologous cellular transcripts produced by the endogenous gene or transgene in the nematode worm Caenorhabditis elegans . Like that found in plants, virus-induced gene silencing (VIGS) in C. elegans also involves RRF-1, a worm RNA-dependent RNA polymerase (RdRP) that is known to produce single-stranded secondary siRNAs in a Dicer-independent manner. We further demonstrated that VIGS in C. elegans is inheritable, suggesting that VIGS has the potential to generate profound epigenetic consequences in future generations. Altogether, these findings, for the first time, confirmed that viRNAs have the potential to modulate host gene expression in the animal kingdom. Most importantly, the success in uncoupling the trigger and the target of the antiviral silencing would allow for the exploration of novel features of virus-host interactions mediated by viRNAs in the animal kingdom.
CITATION STYLE
Guo, X., Li, W.-X., & Lu, R. (2012). Silencing of Host Genes Directed by Virus-Derived Short Interfering RNAs in Caenorhabditis elegans. Journal of Virology, 86(21), 11645–11653. https://doi.org/10.1128/jvi.01501-12
Mendeley helps you to discover research relevant for your work.