Rate-dependent phase transitions in Li2 FeSiO4 cathode nanocrystals

35Citations
Citations of this article
42Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Nanostructured lithium metal orthosilicate materials hold a lot of promise as next generation cathodes but their full potential realization is hampered by complex crystal and electrochemical behavior. In this work Li2 FeSiO4 crystals are synthesized using organic-assisted precipitation method. By varying the annealing temperature different structures are obtained, namely the monoclinic phase at 400°C, the orthorhombic phase at 900°C, and a mixed phase at 700°C. The three Li2 FeSiO4 crystal phases exhibit totally different charge/discharge profiles upon delithiation/lithiation. Thus the 400°C monoclinic nanocrystals exhibit initially one Li extraction via typical solid solution reaction, while the 900°C orthorhombic crystals are characterized by unacceptably high cell polarization. In the meantime the mixed phase Li2 FeSiO4 crystals reveal a mixed cycling profile. We have found that the monoclinic nanocrystals undergo phase transition to orthorhombic structure resulting in significant progressive deterioration of the material's Li storage capability. By contrast, we discovered when the monoclinic nanocrystals are cycled initially at higher rate (C/20) and subsequently subjected to low rate (C/50) cycling the material's intercalation performance is stabilized. The discovered rate-dependent electrochemically-induced phase transition and stabilization of lithium metal silicate structure provides a novel and potentially rewarding avenue towards the development of high capacity Li-ion cathodes.

Cite

CITATION STYLE

APA

Lu, X., Wei, H., Chiu, H. C., Gauvin, R., Hovington, P., Guerfi, A., … Demopoulos, G. P. (2015). Rate-dependent phase transitions in Li2 FeSiO4 cathode nanocrystals. Scientific Reports, 5. https://doi.org/10.1038/srep08599

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free