Comparative transcriptome analysis of latex from rubber tree clone CATAS8-79 and PR107 reveals new cues for the regulation of latex regeneration and duration of latex flow

N/ACitations
Citations of this article
43Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Rubber tree (Hevea brasiliensis Muell. Arg.) is the primarily commercial source of natural rubber in the world. Latex regeneration and duration of latex flow after tapping are the two factors that determine rubber yield of rubber tree, and exhibit a huge variation between rubber tree clones CATAS8-79 and PR107. Results: To dissect the molecular mechanism for the regulation of latex regeneration and duration of latex flow, we sequenced and comparatively analyzed latex of rubber tree clone CATAS8-79 and PR107 at transriptome level. More than 26 million clean reads were generated in each pool and 51,829 all-unigenes were totally assembled. A total of 6,726 unigenes with differential expression patterns were detected between CATAS8-79 and PR107. Functional analysis showed that genes related to mass of categories were differentially enriched between the two clones. Expression pattern of genes which were involved in latex regeneration and duration of latex flow upon successive tapping was analyzed by quantitative PCR. Several genes related to rubber biosynthesis, cellulose and lignin biosynthesis and rubber particle aggregation were differentially expressed between CATAS8-79 and PR107. Conclusions: This is the first report about probing latex regeneration and duration of latex flow by comparative transcriptome analysis. Among all the suggested factors, it is more important that the level of endogenous jasmonates, carbohydrate metabolism, hydroxymethylglutaryl-CoA reductase (HMGR) and Hevea rubber transferase (HRT) in mevalonate (MVA) parthway for latex regeneration while the level of endogenous ethylene (ETH), lignin content of laticifer cell wall, antioxidants and glucanases for the duration of latex flow. These data will provide new cues for understanding the molecular mechanism for the regulation of latex regeneration and duration of latex flow in rubber tree.

Cite

CITATION STYLE

APA

Chao, J., Chen, Y., Wu, S., & Tian, W. M. (2015). Comparative transcriptome analysis of latex from rubber tree clone CATAS8-79 and PR107 reveals new cues for the regulation of latex regeneration and duration of latex flow. BMC Plant Biology, 15(1). https://doi.org/10.1186/s12870-015-0488-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free