Time-Resolved Micro PIV in the Pivoting Area of the Triflo Mechanical Heart Valve

9Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The Lapeyre-Triflo FURTIVA valve aims at combining the favorable hemodynamics of bioprosthetic heart valves with the durability of mechanical heart valves (MHVs). The pivoting region of MHVs is hemodynamically of special interest as it may be a region of high shear stresses, combined with areas of flow stagnation. Here, platelets can be activated and may form a thrombus which in the most severe case can compromise leaflet mobility. In this study we set up an experiment to replicate the pulsatile flow in the aortic root and to study the flow in the pivoting region under physiological hemodynamic conditions (CO = 4.5 L/min / CO = 3.0 L/min, f = 60 BPM). It was found that the flow velocity in the pivoting region could reach values close to that of the bulk flow during systole. At the onset of diastole the three valve leaflets closed in a very synchronous manner within an average closing time of 55 ms which is much slower than what has been measured for traditional bileaflet MHVs. Hot spots for elevated viscous shear stresses were found at the flanges of the housing and the tips of the leaflet ears. Systolic VSS was maximal during mid-systole and reached levels of up to 40 Pa.

Cite

CITATION STYLE

APA

Vennemann, B. M., Rösgen, T., Carrel, T. P., & Obrist, D. (2016). Time-Resolved Micro PIV in the Pivoting Area of the Triflo Mechanical Heart Valve. Cardiovascular Engineering and Technology, 7(3), 210–222. https://doi.org/10.1007/s13239-016-0264-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free