Roughage biodegradation by natural co-cultures of rumen fungi and methanogens from Qinghai yaks

3Citations
Citations of this article
3Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Anaerobic fungus–methanogen co-cultures from rumen liquids and faeces can degrade lignocellulose efficiently. In this study, 31 fungus–methanogen co-cultures were first obtained from the rumen of yaks grazing in Qinghai Province, China, using the Hungate roll-tube technique. The fungi were identified according to morphological characteristics and internal transcribed spacer (ITS) sequences. The methanogens associated with each fungus were identified by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and 16S rRNA gene sequencing. They were five co-culture types: Neocallimastix frontalis + Methanobrevibacter ruminantium, Neocallimastix frontalis + Methanobrevibacter gottschalkii, Orpinomyces joyonii + Methanobrevibacter ruminantium, Caecomyces communis + Methanobrevibacter ruminantium, and Caecomyces communis + Methanobrevibacter millerae. Among the 31 co-cultures, during the 5-day incubation, the N. frontalis + M. gottschalkii co-culture YakQH5 degraded 59.0%–68.1% of the dry matter (DM) and 49.5%–59.7% of the neutral detergent fiber (NDF) of wheat straw, corn stalk, rice straw, oat straw and sorghum straw to produce CH4 (3.0–4.6 mmol/g DM) and acetate (7.3–8.6 mmol/g DM) as end-products. Ferulic acid (FA) released at 4.8 mg/g DM on corn stalk and p-coumaric acid (PCA) released at 11.7 mg/g DM on sorghum straw showed the highest values, with the following peak values of enzyme activities: xylanase at 12,910 mU/mL on wheat straw, ferulic acid esterase (FAE) at 10.5 mU/mL on corn stalk, and p-coumaric acid esterase (CAE) at 20.5 mU/mL on sorghum straw. The N. frontalis + M. gottschalkii co-culture YakQH5 from Qinghai yaks represents a new efficient combination for lignocellulose biodegradation, performing better than previously reported fungus–methanogen co-cultures from the digestive tract of ruminants.

Cite

CITATION STYLE

APA

Wei, Y., Yang, H., Wang, Z., Zhao, J., Qi, H., Wang, C., … Yang, T. (2022). Roughage biodegradation by natural co-cultures of rumen fungi and methanogens from Qinghai yaks. AMB Express, 12(1). https://doi.org/10.1186/s13568-022-01462-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free