An injectable alginate/extra cellular matrix (ECM) hydrogel towards acellular treatment of heart failure

45Citations
Citations of this article
76Readers
Mendeley users who have this article in their library.
Get full text

Abstract

As treatments for myocardial infarction (MI) continue to improve, the population of people suffering from heart failure (HF) is rising significantly. Novel treatment strategies aimed at achieving long-term functional stabilisation and improvement in heart function post MI include the delivery of biomaterial hydrogels and myocardial matrix-based therapies to the left ventricle wall. Individually alginate hydrogels and myocardial matrix-based therapies are at the most advanced stages of commercial/clinical development for this potential treatment option. However, despite these individual successes, the potential synergistic effect gained by combining the two therapies remains unexplored. This study serves as a translational step in evaluating the minimally invasive delivery of dual acting alginate-based hydrogels to the heart. We have successfully developed new production methods for hybrid alginate/extracellular matrix (ECM) hydrogels. We have identified that the high G block alginate/ECM hybrid hydrogel has appropriate rheological and mechanical properties (1.6 KPa storage modulus, 29 KPa compressive modulus and 14 KPa dynamic modulus at day 1) and can be delivered using a minimally invasive delivery device. Furthermore, we have determined that these novel hydrogels are not cytotoxic and are capable of enhancing the metabolic activity of dermal fibroblasts in vitro (p < 0.01). Overall these results suggest that an effective minimally invasive HF treatment option could be achieved by combining alginate and ECM particles.

Cite

CITATION STYLE

APA

Curley, C. J., Dolan, E. B., Otten, M., Hinderer, S., Duffy, G. P., & Murphy, B. P. (2019). An injectable alginate/extra cellular matrix (ECM) hydrogel towards acellular treatment of heart failure. Drug Delivery and Translational Research, 9(1), 1–13. https://doi.org/10.1007/s13346-018-00601-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free