N-type organic semiconductors are notoriously unstable in air, requiring the design of new materials that focuses on lowering their LUMO energy levels and enhancing their air stability in organic electronic devices such as organic thin-film transistors (OTFTs). Since the discovery of the notably air stable and high electron mobility polymer poly{[N,N′-bis (2-octyldodecyl)- naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,29-bisthiophene)} (N2200), it has become a popular n-type semiconductor, with numerous materials being designed to mimic its structure. Although N2200 itself is well-studied, many of these comparable materials have not been sufficiently characterized to compare their air stability to N2200. To further the development of air stable and high mobility n-type organic semiconductors, N2200 was studied in organic thin film transistors alongside three N2200-based analogues as well as a recently developed polymer based on a (3E,7E)-3,7-bis(2-oxoindolin-3-ylidene)benzo[1,2-b:4,5-b′]difuran-2,6(3 H,7 H)-dione (IBDF) core. This IBDF polymer has demonstrated promising field-effect mobility and air stability in drop-cast OTFTs. While N2200 outperformed its analogues, the IBDF-based polymer displayed superior air and temperature stability compared to N2200. Overall, polymers with more heteroatoms displayed greater air stability. These findings will support the development of new air-stable materials, and further demonstrate the persistent need for the development of novel n-type semiconductors.
CITATION STYLE
Brixi, S., Melville, O. A., Mirka, B., He, Y., Hendsbee, A. D., Meng, H., … Lessard, B. H. (2020). Air and temperature sensitivity of n-type polymer materials to meet and exceed the standard of N2200. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-60812-x
Mendeley helps you to discover research relevant for your work.