Improved snow interception modeling using canopy parameters derived from airborne LiDAR data

51Citations
Citations of this article
58Readers
Mendeley users who have this article in their library.

Abstract

Forest snow interception can account for large snow storage differences between open and forested areas. The effect of interception can also lead to significant variations in sublimation, with estimates varying from 5 to 60% of total snowfall. Most current interception models utilize canopy closure and LAI to partition interception from snowfall and calculate interception efficiency as an exponential decrease of interception efficiency with increasing precipitation. However, as demonstrated, these models can show specific deficiencies within heterogeneous canopy. Seven field areas were equipped with 1932 surveyed points within various canopy density regimes in three elevation bands surrounding Davos, Switzerland. Snow interception measurements were taken from 2012 to 2014 (9000 samples) and compared with measurements at two open sites. The measured data indicated the presence of snow bridging from a demonstrated increase in interception efficiency as precipitation increased until a maximum was reached. As precipitation increased beyond this maximum, the data then exhibited a decrease in interception efficiency. Standard and novel canopy parameters were developed using aerial LiDAR data. These included estimates of LAI, canopy closure, distance to canopy, gap fraction, and various tree size parameters. These canopy metrics and the underlying efficiency distribution were then integrated to formulate a conceptual model based upon the snow interception measurements. This model gave a 27% increase in the r 2 (from 0.39 to 0.66) and a 40% reduction in RMSE (from 5.19 to 3.39) for both calibration and validation data sets when compared to previous models at the point scale. When upscaled to larger grid sizes, the model demonstrated further increases in performance.

Cite

CITATION STYLE

APA

Moeser, D., Stähli, M., & Jonas, T. (2015). Improved snow interception modeling using canopy parameters derived from airborne LiDAR data. Water Resources Research, 51(7), 5041–5059. https://doi.org/10.1002/2014WR016724

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free