K-ion batteries (KIBs) have the potential to offer a cheaper alternative to Li-ion batteries (LIBs) using widely abundant materials. Conversion/alloying anodes have high theoretical capacities in KIBs, but it is believed that electrode damage from volume expansion and phase segregation by the accommodation of large K-ions leads to capacity loss during electrochemical cycling. To date, the exact phase transformations that occur during potassiation and depotassiation of conversion/alloying anodes are relatively unexplored. In this work, we synthesize two distinct compositions of tin phosphides, Sn4P3and SnP3, and compare their conversion/alloying mechanisms with solid-state nuclear magnetic resonance (SSNMR) spectroscopy, powder X-ray diffraction (XRD), and density functional theory (DFT) calculations. Ex situ 31P and 119Sn SSNMR analyses reveal that while both Sn4P3and SnP3exhibit phase separation of elemental P and the formation of KSnP-type environments (which are predicted to be stable based on DFT calculations) during potassiation, only Sn4P3produces metallic Sn as a byproduct. In both anode materials, K reacts with elemental P to form K-rich compounds containing isolated P sites that resemble K3P but K does not alloy with Sn during potassiation of Sn4P3. During charge, K is only fully removed from the K3P-type structures, suggesting that the formation of ternary regions in the anode and phase separation contribute to capacity loss upon reaction of K with tin phosphides.
CITATION STYLE
Ells, A. W., Evans, M. L., Groh, M. F., Morris, A. J., & Marbella, L. E. (2022). Phase Transformations and Phase Segregation during Potassiation of Sn xP yAnodes. Chemistry of Materials, 34(16), 7460–7467. https://doi.org/10.1021/acs.chemmater.2c01570
Mendeley helps you to discover research relevant for your work.