This study investigated the effects and mechanisms of 1,2-bis[(3-methoxyphenyl)methyl]ethane-1,2-dicarboxylic acid (S4), a sesamin derivative, on anti-inflammation and antiphotoaging in vitro and in vivo. Human skin fibroblasts were treated with S4 and did not show cytotoxicity under concentrations of 5–50 µM. In addition, S4 also reduced ultraviolet (UV)B-induced intracellular reactive oxygen species (ROS) production. Additionally, S4 inhibited UVB-induced phosphorylation of mitogen-activated protein (MAP) kinases, activator protein-1 (AP-1), and matrix metalloproteinases (MMPs) overexpression. Furthermore, S4 also inhibited UVB-induced Smad7 protein expression and elevated total collagen content in human dermal fibroblasts. For anti-inflammatory activity, S4 inhibited UVB-induced nitric oxide synthase (i-NOS) and cyclooxygenase (COX)-2 protein expression and inhibited nuclear factor-kappaB (NF-ĸB) translocation into the nucleus. S4 ameliorated UVB-induced erythema and wrinkle formation in hairless mice. On histological observation, S4 also ameliorated UVB-induced epidermal hyperplasia and collagen degradation. S4 reduced UVB-induced MMP-1, interleukin (IL)-6, and NF-ĸB expression in the mouse skin. The results indicated that S4 had antiphotoaging and anti-inflammatory activities, protecting skin from premature aging.
CITATION STYLE
Wu, P. Y., Lin, T. Y., Hou, C. W., Chang, Q. X., Wen, K. C., Lin, C. Y., & Chiang, H. M. (2019). 1,2-bis[(3-methoxyphenyl)methyl]ethane-1,2-dicarboxylic acid reduces UVB-induced photodamage in vitro and in vivo. Antioxidants, 8(10). https://doi.org/10.3390/antiox8100452
Mendeley helps you to discover research relevant for your work.