Beneficial bacteria activate nutrients and promote wheat growth under conditions of reduced fertilizer application

117Citations
Citations of this article
173Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Excessive application of chemical fertilizer has exerted a great threat to soil quality and the environment. The inoculation of plants with plant-growth-promoting rhizobacteria (PGPR) has emerged as a great prospect for ecosystem recovery. The aim of this work to isolate PGPRs and highlights the effect of bacterial inoculants on available N/P/K content in soil and on the growth of wheat under conditions of reduced fertilizer application. Results: Thirty-nine PGPRs were isolated and tested for their growth-promoting potential. Thirteen isolates had nitrogen fixation ability, of which N9 (Azotobacter chroococcum) had the highest acetylene reduction activity of 156.26 nmol/gh. Eleven isolates had efficient phosphate solubilizing ability, of which P5 (Klebsiella variicola) released the most available phosphorus in liquid medium (231.68 mg/L). Fifteen isolates had efficient potassium solubilizing ability, of which K13 (Rhizobium larrymoorei) released the most available potassium in liquid medium (224.66 mg/L). In culture medium supplemented with tryptophan, P9 (Klebsiella pneumoniae) produced the greatest amount of IAA. Inoculation with the bacterial combination K14 + 176 + P9 + N8 + P5 increased the alkali-hydrolysed nitrogen, available phosphorus and available potassium in the soil by 49.46, 99.51 and 19.38%, respectively, and enhanced the N, P, and K content of wheat by 97.7, 96.4 and 42.1%, respectively. Moreover, reducing fertilizer application by 25% did not decrease the available nitrogen, phosphorus, and potassium in the soil and N/P/K content, plant height, and dry weight of wheat. Conclusions: The bacterial combination K14 + 176 + P9 + N8 + P5 is superior candidates for biofertilizers that may reduce chemical fertilizer application without influencing the normal growth of wheat.

Cite

CITATION STYLE

APA

Wang, J., Li, R., Zhang, H., Wei, G., & Li, Z. (2020). Beneficial bacteria activate nutrients and promote wheat growth under conditions of reduced fertilizer application. BMC Microbiology, 20(1). https://doi.org/10.1186/s12866-020-1708-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free