A steerable, untethered, 250 × 60 µm MEMS mobile micro-robot

0Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We present a steerable, electrostatic, untethered, MEMS micro-robot, with dimensions of 60 µm by 250 µm by 10 µm. This micro-robot is 1 to 2 orders of magnitude smaller in size than previous micro-robotic systems. The device consists of a curved, cantilevered steering arm, mounted on an untethered scratch drive actuator. These two components are fabricated monolithically from the same sheet of conductive polysilicon, and receive a common power and control signal through a capacitive coupling with an underlying electrical grid. All locations on the grid receive the same power and control signal, so that the devices can be operated without knowledge of their position on the substrate and without constraining rails or tethers. Control and power delivery waveforms are broadcast to the device through the capacitive power coupling, and are decoded by the electromechanical response of the device body. Individual control of the component actuators provides two distinct motion gaits (forward motion and turning), which together allow full coverage of a planar workspace (the robot is globally controllable). These MEMS micro-robots demonstrate turning error of less than 3.7°/mm during forward motion, turn with radii as small as 176 µm, and achieve speeds of over 200 µsec, with an average step size of 12 nm. They have been shown to operate open-loop for distances exceeding 35 cm without failure, and can be controlled through teleoperation to navigate complex paths.

Cite

CITATION STYLE

APA

Donald, B. R., Levey, C. G., McGray, C. D., Paprotny, I., & Rus, D. (2007). A steerable, untethered, 250 × 60 µm MEMS mobile micro-robot. In Springer Tracts in Advanced Robotics (Vol. 28, pp. 337–356). Springer Verlag. https://doi.org/10.1007/978-3-540-48113-3_31

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free