Tropospheric ozone (O 3) is a known greenhouse gas responsible for impacts on human and animal health and ecosystem functioning. In addition, O 3 plays an important role in tropospheric chemistry, together with nitrogen oxides. The determination of surface-atmosphere exchange fluxes of these trace gases is a prerequisite to establish their atmospheric budget and evaluate their impact onto the biosphere. In this study, O 3, nitric oxide (NO) and nitrogen dioxide (NO 2) fluxes were measured using the aerodynamic gradient method over a bare soil in an agricultural field. Ozone and NO fluxes were also measured using eddy-covariance and automatic chambers, respectively. The aerodynamic gradient measurement system, composed of fast response sensors, was capable to measure significant differences in NO and O 3 mixing ratios between heights. However, due to local advection, NO 2 mixing ratios were highly non-stationary and NO 2 fluxes were, therefore, not significantly different from zero. The chemical reactions between O 3, NO and NO 2 led to little ozone flux divergence between the surface and the measurement height (less than 1% of the flux on average), whereas the NO flux divergence was about 10% on average. The use of fast response sensors allowed reducing the flux uncertainty. The aerodynamic gradient and the eddy-covariance methods gave comparable O 3 fluxes. The chamber NO fluxes were down to 70% lower than the aerodynamic gradient fluxes, probably because of either the spatial heterogeneity of the soil NO emissions or the perturbation due to the chamber itself. © Author(s) 2012.
CITATION STYLE
Stella, P., Loubet, B., Laville, P., Lamaud, E., Cazaunau, M., Laufs, S., … Cellier, P. (2012). Comparison of methods for the determination of NO-O 3-NO 2 fluxes and chemical interactions over a bare soil. Atmospheric Measurement Techniques, 5(6), 1241–1257. https://doi.org/10.5194/amt-5-1241-2012
Mendeley helps you to discover research relevant for your work.