Social networks constitute a new platform for information propagation, but its success is crucially dependent on the choice of spreaders who initiate the spreading of information. In this paper, we remove edges in a network at random and the network segments into isolated clusters. The most important nodes in each cluster then form a set of influential spreaders, such that news propagating from them would lead to extensive coverage and minimal redundancy. The method utilizes the similarities between the segmented networks before percolation and the coverage of information propagation in each social cluster to obtain a set of distributed and coordinated spreaders. Our tests of implementing the susceptible-infected-recovered model on Facebook and Enron email networks show that this method outperforms conventional centrality-based methods in terms of spreadability and coverage redundancy. The suggested way of identifying influential spreaders thus sheds light on a new paradigm of information propagation in social networks.
CITATION STYLE
Ji, S., Lü, L., Yeung, C. H., & Hu, Y. (2017). Effective spreading from multiple leaders identified by percolation in the susceptible-infected-recovered (SIR) model. New Journal of Physics, 19(7). https://doi.org/10.1088/1367-2630/aa76b0
Mendeley helps you to discover research relevant for your work.