The antioxidative and photoprotective properties of vitamin E have caused it to be included as an active agent in various pharmaceutical and cosmetic products. However, its lipophilicity, chemical instability and poor skin penetration have limited the effectiveness of these formulations. For that reason, many attempts to include it in different drug delivery systems have been made. In recent decades, lipid nanoparticles have received special attention due to their advantages of compatibility with the skin, ability to enhance penetration of drugs in the stratum corneum, protection of the encapsulated substance against degradation induced by the external medium and control of drug release. This work reviews the current status of the encapsulation of vitamin E in lipid nanoparticles. We describe the most important methods for obtaining and characterizing lipid nanoparticles containing vitamin E (LNP-VE), various techniques for the evaluation of vitamin E's properties after encapsulation, the main in vitro and in vivo studies of the potential effectiveness or toxicity of LNP-VE, the formulations and stability studies of this delivery system, the commercial products based on LNP-VE and the regulatory aspects related to lipid nanoparticles. Finally, we discuss the most relevant advantages of encapsulating vitamin E in such particles and critical aspects that still demand attention to enhance the potential of solid lipid nanoparticles to deliver vitamin E.
CITATION STYLE
Saez, V., Souza, I. D. L., & Mansur, C. R. E. (2018, April 1). Lipid nanoparticles (SLN & NLC) for delivery of vitamin E: a comprehensive review. International Journal of Cosmetic Science. Blackwell Publishing Ltd. https://doi.org/10.1111/ics.12452
Mendeley helps you to discover research relevant for your work.