Anisometric Microstructures to Determine Minimal Critical Physical Cues Required for Neurite Alignment

9Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In nerve regeneration, scaffolds play an important role in providing an artificial extracellular matrix with architectural, mechanical, and biochemical cues to bridge the site of injury. Directed nerve growth is a crucial aspect of nerve repair, often introduced by engineered scaffolds imparting linear tracks. The influence of physical cues, determined by well-defined architectures, has been mainly studied for implantable scaffolds and is usually limited to continuous guiding features. In this report, the potential of short anisometric microelements in inducing aligned neurite extension, their dimensions, and the role of vertical and horizontal distances between them, is investigated. This provides crucial information to create efficient injectable 3D materials with discontinuous, in situ magnetically oriented microstructures, like the Anisogel. By designing and fabricating periodic, anisometric, discreet guidance cues in a high-throughput 2D in vitro platform using two-photon lithography techniques, the authors are able to decipher the minimal guidance cues required for directed nerve growth along the major axis of the microelements. These features determine whether axons grow unidirectionally or cross paths via the open spaces between the elements, which is vital for the design of injectable Anisogels for enhanced nerve repair.

Cite

CITATION STYLE

APA

Vedaraman, S., Perez-Tirado, A., Haraszti, T., Gerardo-Nava, J., Nishiguchi, A., & De Laporte, L. (2021). Anisometric Microstructures to Determine Minimal Critical Physical Cues Required for Neurite Alignment. Advanced Healthcare Materials, 10(20). https://doi.org/10.1002/adhm.202100874

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free