In this paper, the mechanical and fracture properties of fly ash geopolymer concrete (FAGC) mixed with calcium aluminate cement (CAC) were explored. Fly ash was partially replaced by CAC with 2.5%, 5% and 7.5%. The results exhibit that the mechanical and fracture behaviors of FAGC are significantly influenced by CAC content. Based on the formation of more aluminum-rich gels, C-(A)-S-H and C-S-H gels, with the increase of CAC content, the compressive strength, splitting tensile strength and elastic modulus improved. Meanwhile, the peak load and effective fracture toughness show a monotone increasing trend. In addition, because C-S-H gels absorbed more energy, the fracture energy of FAGC increases. The maximal peak load, double-K fracture toughness and fracture energy reached up to1.79 kN, 4.27 MPam0.5, 10.1 MPam0.5 and 85.8 N/m with CAC content of 7.5%, respectively.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Wang, Y., Hu, S., & He, Z. (2019). Mechanical and fracture properties of fly ash geopolymer concrete addictive with calcium aluminate cement. Materials, 12(18). https://doi.org/10.3390/ma12182982