Secured Telemedicine Using Region-Based Watermarking with Tamper Localization

71Citations
Citations of this article
57Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Medical images exchanged over public networks require a methodology to provide confidentiality for the image, authenticity of the image ownership and source of origin, and image integrity verification. To provide these three security requirements, we propose in this paper a region-based algorithm based on multiple watermarking in the frequency and spatial domains. Confidentiality and authenticity are provided by embedding robust watermarks in the region-of-non-interest (RONI) of the image using a blind scheme in the discrete wavelet transform and singular value decomposition domain (DWT-SVD). On the other hand, integrity is provided by embedding local fragile watermarks in the region-of-interest (ROI) of the image using a reversible scheme in the spatial domain. The integrity provided by the proposed algorithm is implemented on a block-level of the partitioned-image, thus enabling localized detection of tampered regions. The algorithm was evaluated with respect to imperceptibility, robustness, capacity, and tamper localization capability, using MRI, Ultrasound, and X-ray gray-scale medical images. Performance results demonstrate the effectiveness of the proposed algorithm in providing the required security services for telemedicine applications.

Cite

CITATION STYLE

APA

Al-Haj, A., & Amer, A. (2014). Secured Telemedicine Using Region-Based Watermarking with Tamper Localization. Journal of Digital Imaging, 27(6), 737–750. https://doi.org/10.1007/s10278-014-9709-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free