Plants often experience multiple stresses in a given day or season, and it is self-evident that given functional traits can provide tolerances of multiple stresses. Yet, the multiple functions of individual traits are rarely explicitly considered in ecology and evolution due to a lack of a quantitative framework. We present a theory for considering the combined importance of the several functions that a single trait can contribute to alleviating multiple stresses. We derive five inter-related general predictions: (1) that trait multifunctionality is overall highly beneficial to fitness; (2) that species possessing multifunctional traits should increase in abundance and in niche breadth; (3) that traits are typically optimized for multiple functions and thus can be far from optimal for individual functions; (4) that the relative importance of each function of a multifunctional trait depends on the environment; and (5) that traits will be often “co-opted” for additional functions during evolution and community assembly. We demonstrate how the theory can be applied quantitatively by examining the multiple functions of leaf trichomes (hairs) using heuristic model simulations, substantiating the general principles. We identify avenues for further development and applications of the theory of trait multifunctionality in ecology and evolution.
CITATION STYLE
Sack, L., & Buckley, T. N. (2020, July 1). Trait multi-functionality in plant stress response. Integrative and Comparative Biology. Oxford University Press. https://doi.org/10.1093/icb/icz152
Mendeley helps you to discover research relevant for your work.