Capillary isoelectric focusing immunoassay for fat cell differentiation proteomics

14Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

Profiling cellular proteome is critical to understanding signal integration during cell fate determination. In this study, the capability of capillary isoelectric focusing (cIEF) immunoassays to detect post-translational modifications (PTM) of protein isoforms is demonstrated. cIEF immunoassays exhibit protein detection sensitivity at up to 5 orders of magnitude higher than traditional methods. This detection ultra-sensitivity permits proteomic profiling of several nanograms of tissue samples. cIEF immunoassays are employed to simultaneously profile three protein kinases during fat cell differentiation: cGMP-dependent protein kinase type I (PKG-I) of the nitric oxide (NO) signaling pathway, protein kinase B (Akt) of the insulin signaling pathway, and extracellular signal-regulated kinase (ERK) of the mitogen-activated protein kinase (MAPK) signaling pathway. Interestingly, a switch in the expression level of PKG- isoforms is observed during fat cell differentiation. While both PKG-Iα and PKG-Iβ isoforms are present in preadipocytes, only PKG-Iβ isoform is expressed in adipocytes. On the other hand, the phosphorylation level increases for Akt while decreases for ERK1 and ERK2 following the maturation of preadipocytes into adipocytes. Taken together, cIEF immunoassay provides a highly sensitive means to study fat cell differentiation proteomics. cIEF immunoassay should be a powerful proteomics tool to study complex protein signal integration in biological systems.

Cite

CITATION STYLE

APA

Johlfs, M. G., Gorjala, P., Urasaki, Y., Le, T. T., & Fiscus, R. R. (2015). Capillary isoelectric focusing immunoassay for fat cell differentiation proteomics. PLoS ONE, 10(7). https://doi.org/10.1371/journal.pone.0132105

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free