An open source multistep model to predict mutagenicity from statistical analysis and relevant structural alerts

80Citations
Citations of this article
73Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Mutagenicity is the capability of a substance to cause genetic mutations. This property is of high public concern because it has a close relationship with carcinogenicity and potentially with reproductive toxicity. Experimentally, mutagenicity can be assessed by the Ames test on Salmonella with an estimated experimental reproducibility of 85%; this intrinsic limitation of the in vitro test, along with the need for faster and cheaper alternatives, opens the road to other types of assessment methods, such as in silico structure-activity prediction models.A widely used method checks for the presence of known structural alerts for mutagenicity. However the presence of such alerts alone is not a definitive method to prove the mutagenicity of a compound towards Salmonella, since other parts of the molecule can influence and potentially change the classification. Hence statistically based methods will be proposed, with the final objective to obtain a cascade of modeling steps with custom-made properties, such as the reduction of false negatives.Results: A cascade model has been developed and validated on a large public set of molecular structures and their associated Salmonella mutagenicity outcome. The first step consists in the derivation of a statistical model and mutagenicity prediction, followed by further checks for specific structural alerts in the "safe" subset of the prediction outcome space. In terms of accuracy (i.e., overall correct predictions of both negative and positives), the obtained model approached the 85% reproducibility of the experimental mutagenicity Ames test.Conclusions: The model and the documentation for regulatory purposes are freely available on the CAESAR website. The input is simply a file of molecular structures and the output is the classification result. © 2010 Ferrari and Gini; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Ferrari, T., & Gini, G. (2010). An open source multistep model to predict mutagenicity from statistical analysis and relevant structural alerts. Chemistry Central Journal, 4(SUPPL. 1). https://doi.org/10.1186/1752-153X-4-S1-S2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free