On mechanisms of interaction in electrosurgery

53Citations
Citations of this article
62Readers
Mendeley users who have this article in their library.

Abstract

Electrosurgery is broadly used in a wide variety of surgical procedures, yet its underlying mechanisms of interaction are poorly characterized. Fundamentals of electrosurgery have not changed much since the 1930s-cutting is still performed using continuous RF waveforms, leaving a collateral damage zone of hundreds of micrometers in depth. Pulsed waveforms with variable duty cycle are used mostly for tissue coagulation. Recently, we have demonstrated that electrosurgery with microsecond bursts applied via microelectrodes can provide cellular precision in soft tissue dissection. This paper examines dynamics of pulsed electrical discharges in conductive medium, and accompanying phenomena, such as vaporization, cavitation and ionization. It is demonstrated that ionization of the vapor cavity around the electrode is essential for energy delivery beyond the vaporization threshold. It is also shown that the ionization threshold voltage and resistance of the plasma-mediated discharge are much lower in the negative phase of the discharge than in the positive one. Capacitive coupling of the ac waveform to the electrode compensates for this asymmetry by shifting the medium voltage on the electrode, thus increasing the positive and decreasing the negative amplitudes to achieve charge balance in the opposite phases. With planar insulated electrodes having exposed edges of 12.5 μm in width and bursts of 40 μs in duration even tough biological tissues can be dissected with cellular precision. For example, cartilage dissection is achieved with pulse energy of 2.2 mJ per millimeter of length of the blade, and leaves a thermal damage zone of only 5-20 μm in width. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

References Powered by Scopus

Electrosurgery: History, principles, and current and future uses

324Citations
N/AReaders
Get full text

Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential

272Citations
N/AReaders
Get full text

Plasma characteristics of repetitively-pulsed electrical discharges in saline solutions used for surgical procedures

154Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Gas plasma: Medical uses and developments in wound care

296Citations
N/AReaders
Get full text

Comparative healing of surgical incisions created by the peak plasmablade, conventional electrosurgery, and a scalpel

112Citations
N/AReaders
Get full text

Electrosurgery: Part I. Basics and principles

110Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Palanker, D., Vankov, A., & Jayaraman, P. (2008). On mechanisms of interaction in electrosurgery. New Journal of Physics, 10. https://doi.org/10.1088/1367-2630/10/12/123022

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 19

54%

Professor / Associate Prof. 7

20%

Researcher 6

17%

Lecturer / Post doc 3

9%

Readers' Discipline

Tooltip

Engineering 24

59%

Physics and Astronomy 8

20%

Medicine and Dentistry 7

17%

Agricultural and Biological Sciences 2

5%

Article Metrics

Tooltip
Mentions
References: 3

Save time finding and organizing research with Mendeley

Sign up for free