Prediction of Longitudinal Cognitive Decline in Preclinical Alzheimer Disease Using Plasma Biomarkers

96Citations
Citations of this article
173Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Importance: Alzheimer disease (AD) pathology starts with a prolonged phase of β-amyloid (Aβ) accumulation without symptoms. The duration of this phase differs greatly among individuals. While this disease phase has high relevance for clinical trial designs, it is currently unclear how to best predict the onset of clinical progression. Objective: To evaluate combinations of different plasma biomarkers for predicting cognitive decline in Aβ-positive cognitively unimpaired (CU) individuals. Design, Setting, and Participants: This prospective population-based prognostic study evaluated data from 2 prospective longitudinal cohort studies (the Swedish BioFINDER-1 and the Wisconsin Registry for Alzheimer Prevention [WRAP]), with data collected from February 8, 2010, to October 21, 2020, for the BioFINDER-1 cohort and from August 11, 2011, to June 27, 2021, for the WRAP cohort. Participants were CU individuals recruited from memory clinics who had brain Aβ pathology defined by cerebrospinal fluid (CSF) Aβ42/40 in the BioFINDER-1 study and by Pittsburgh Compound B (PiB) positron emission tomography (PET) in the WRAP study. A total of 564 eligible Aβ-positive and Aβ-negative CU participants with available relevant data from the BioFINDER-1 and WRAP cohorts were included in the study; of those, 171 Aβ-positive participants were included in the main analyses. Exposures: Baseline P-tau181, P-tau217, P-tau231, glial fibrillary filament protein, and neurofilament light measured in plasma; CSF biomarkers in the BioFINDER-1 cohort, and PiB PET uptake in the WRAP cohort. Main Outcomes and Measures: The primary outcome was longitudinal measures of cognition (using the Mini-Mental State Examination [MMSE] and the modified Preclinical Alzheimer Cognitive Composite [mPACC]) over a median of 6 years (range, 2-10 years). The secondary outcome was conversion to AD dementia. Baseline biomarkers were used in linear regression models to predict rates of longitudinal cognitive change (calculated separately). Models were adjusted for age, sex, years of education, apolipoprotein E ϵ4 allele status, and baseline cognition. Multivariable models were compared based on model R2coefficients and corrected Akaike information criterion. Results: Among 171 Aβ-positive CU participants included in the main analyses, 119 (mean [SD] age, 73.0 [5.4] years; 60.5% female) were from the BioFINDER-1 study, and 52 (mean [SD] age, 64.4 [4.6] years; 65.4% female) were from the WRAP study. In the BioFINDER-1 cohort, plasma P-tau217 was the best marker to predict cognitive decline in the mPACC (model R2= 0.41) and the MMSE (model R2= 0.34) and was superior to the covariates-only models (mPACC: R2= 0.23; MMSE: R2= 0.04; P

Cite

CITATION STYLE

APA

Mattsson-Carlgren, N., Salvadó, G., Ashton, N. J., Tideman, P., Stomrud, E., Zetterberg, H., … Hansson, O. (2023). Prediction of Longitudinal Cognitive Decline in Preclinical Alzheimer Disease Using Plasma Biomarkers. JAMA Neurology, 80(4), 360–369. https://doi.org/10.1001/jamaneurol.2022.5272

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free