Forecasted Scenarios of Regional Wind Farms Based on Regular Vine Copulas

48Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

Owing to the uncertainty and volatility of wind energy, forecasted wind power scenarios with proper spatio-temporal correlations are needed in various decision-making problems involving power systems. In this study, forecasted scenarios are generated from an estimated multi-variate distribution of multiple regional wind farms. According to the theory of copulas, marginal distributions and the dependence structure of multi-variate distribution are modeled through the proposed distance-weighted kernel density estimation method and the regular vine (R-vine) copula, respectively. Owing to the flexibility of decomposing correlations of high dimensions into different types of pair-copulas, the R-vine copula provides more accurate results in describing the complicated dependence of wind power. In the case of 26 wind farms located in East China, high-quality forecasted scenarios as well as the corresponding probabilistic forecasting and point forecasting results are obtained using the proposed method, and the results are evaluated using a comprehensive verification framework.

Cite

CITATION STYLE

APA

Wang, Z., Wang, W., Liu, C., & Wang, B. (2020). Forecasted Scenarios of Regional Wind Farms Based on Regular Vine Copulas. Journal of Modern Power Systems and Clean Energy, 8(1), 77–85. https://doi.org/10.35833/MPCE.2017.000570

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free