Distantly Supervised Relation Extraction (DSRE) has been widely studied, since it can automatically extract relations from very large corpora. However, existing DSRE methods only use little semantic information about entities, such as the information of entity type. Thus, in this paper, we propose a method for integrating entity type information into a neural network based DSRE model. It also adopts two attention mechanisms, namely, sentence attention and type attention. The former selects the representative sentences for a sentence bag, while the latter selects appropriate type information for entities. Experimental comparison with existing methods on a benchmark dataset demonstrates its merits.
CITATION STYLE
Bai, L., Jin, X., Zhuang, C., & Cheng, X. (2020). Entity Type Enhanced Neural Model for Distantly Supervised Relation Extraction. In AAAI 2020 - 34th AAAI Conference on Artificial Intelligence (pp. 13751–13752). AAAI press.
Mendeley helps you to discover research relevant for your work.