The challenge of evolving stable polyploidy: could an increase in “crossover interference distance” play a central role?

88Citations
Citations of this article
163Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Whole genome duplication is a prominent feature of many highly evolved organisms, especially plants. When duplications occur within species, they yield genomes comprising multiple identical or very similar copies of each chromosome (“autopolyploids”). Such genomes face special challenges during meiosis, the specialized cellular program that underlies gamete formation for sexual reproduction. Comparisons between newly formed (neo)-autotetraploids and fully evolved autotetraploids suggest that these challenges are solved by specific restrictions on the positions of crossover recombination events and, thus, the positions of chiasmata, which govern the segregation of homologs at the first meiotic division. We propose that a critical feature in the evolution of these more effective chiasma patterns is an increase in the effective distance of meiotic crossover interference, which plays a central role in crossover positioning. We discuss the findings in several organisms, including the recent identification of relevant genes in Arabidopsis arenosa, that support this hypothesis.

Cite

CITATION STYLE

APA

Bomblies, K., Jones, G., Franklin, C., Zickler, D., & Kleckner, N. (2016, June 1). The challenge of evolving stable polyploidy: could an increase in “crossover interference distance” play a central role? Chromosoma. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s00412-015-0571-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free