nickel-based single crystal superalloy

  • 朱 静
  • Re同Cr和Co元素共偏聚于尖端区域 N
  • HUANG Ming & ZHU Jing N
N/ACitations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

Superalloys are a group of materials that are used in high temperature applications, for example gas turbines and aero engines. Gas turbines are most commonly used for power generation, and it is only the very critical components which are exposed to the most severe conditions within the turbine, which are made from superalloy material. Today, energy consumption in many parts of the world is very high and is tending to increase. This implies that all power generating sources, including gas turbines, must aim for higher efficiency. For the gas turbine industry, it is a continuous challenge to develop more energy-efficient turbines. One way to do this is to increase the temperature within the hot stage of the turbine. However, increased temperature in the hot stage also challenges the materials that are used there. Today’s materials are already pushed to the limit, i.e. they cannot be exposed to the temperatures which are required to further increase the turbine efficiency. To solve this problem, research which later can lead to better superalloys that can withstand even higher temperatures, has to be conducted within the area of superalloys. The aim of this licentiate thesis is to increase our knowledge about deformation and damage mechanisms that occur in the microstructure in superalloys when they are subjected to high temperatures and loads. This knowledge can later be used when developing new superalloys. In addition, increased knowledge of what is happening within the material when it is exposed to those severe conditions, will facilitate the development of material models. Material models are used for FEM simulations, when trying to predict life times in gas turbine components during the design process. This licentiate thesis is based on results from thermomechanical fatigue (TMF) testing of Ni-based single-crystal superalloys. Results show that the deformation within the microstructure during TMF is localized to several deformation bands. In addition, the deformation mechanisms are mainly twinning and shearing of the microstructure. Results also indicate that TMF cycling seems to influence the creep rate of single-crystal superalloys.

Cite

CITATION STYLE

APA

朱静, Re同Cr和Co元素共偏聚于尖端区域, null, & HUANG Ming & ZHU Jing, null. (2016). nickel-based single crystal superalloy. SCIENTIA SINICA Technologica, 46(1), 54–60. https://doi.org/10.1360/n092015-00173

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free